Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 341-347, 2005.
Article in Chinese | WPRIM | ID: wpr-305272

ABSTRACT

In this new era of the genome, the complete sequences of various organisms (from the simplest to the most complex such as human) are now available, which provides new opportunities to study biology and to develop therapeutic strategies. But the paucity of research tools that manipulate specific genes in vivo represents a major limitation of functional genomic studies. In nature, the expression of genes is regulated at the transcriptional level primarily by proteins that bind to nucleic acids. Many of these proteins, which are termed transcription factors, are typically consist of two essential yet separable modules: DNA-binding domain (DBD) and effector domain (ED). Attempts to control the gene expression by artificial transcription factors are based on the application of this rule. Among the many naturally occurring DNA-binding domains, the Cys2-His2 zinc-finger domain has demonstrated the greatest potential for the design of novel sequence-specific DNA-binding proteins. Each zinc finger domain, which comprises about 30 amino acids that adopt a compact structure by chelating a zinc ion, typically functions by binding 3 base pairs of DNA sequence. Several zinc fingers linked together would bind proportionally longer DNA sequences. Ideally, these artificial DNA binding proteins could be designed to specifically target and regulate one single gene within a genome as complex as that found in human. Such proteins would be powerful tools in basic and applied research.


Subject(s)
Humans , DNA , Chemistry , Genetics , Metabolism , DNA-Binding Proteins , Metabolism , Gene Expression Regulation , Transcription Factors , Chemistry , Genetics , Metabolism , Zinc Fingers , Genetics , Physiology
2.
Chinese Journal of Biotechnology ; (12): 608-612, 2003.
Article in Chinese | WPRIM | ID: wpr-259139

ABSTRACT

Transcriptions are regulated by transcription factors. Natural transcription factors usually consist of at least two functional domains: a DNA-binding domain and an effector domain. According to this, novel artificial transcription factors are designed to up or down regulate transcription and expression of a target gene. The Cys2-His2 zinc finger domain is a DNA-binding module that has been widely used as the DNA-binding domain in artificial transcription factors. Each zinc finger domain, which comprises about 30 amino acids that adopt a compact structure by chelating a zinc ion, typically functions by binding 3 base pairs of DNA sequence. Several zinc fingers linked together would bind proportionally longer DNA sequences. According to the "bipartite complementary" library strategy, a pair of zinc finger phage display libraries were constructed. After construction of the libraries, a 9bp sequence (5'-GCAGAGGCC-3') on the promoter of SV40 was chosen as a target for next step. After parallel selection, PCR amplification, desired fragments recovery, re-ligation, and additional rounds of selection, phage enzyme-linked ELISA experiments were performed to identify specific binding clones displaying the zinc fingers with predetermined sequence-specificity to our target sequence. Then two clones with strong ELISA signals were chosen to be tested for binding both to its full target site (5'-GCAGAGGCC-3') and to sites containing single transition mutations. The binding specificity of one of the two clones (clone 3) was shown to be fairly good. The three-finger DNA-binding domain targeted to SV40 promoter, that is, zinc finger sequences on clone 3, was fused to KOX1 suppression domain KRAB and cloned into pcDNA3.1 (+) (which expression product was artificial transcription factor). The zinc fingers (which expression product was the DNA-binding domain of artificial transcription factor) and KRAB domain only (which expression product was effector domain of artificial transcription factor) were also cloned separately into the same expression vector. All constructs contained an N-terminal nuclear localization signal. Every of the vectors (including pcDNA3.1 (+) without inserting sequences) were cotransfected with pGL3-Control and pRL-TK and the activity of luciferase was used to indicate the function of product from transfected expression vectors. Our artificial transcription factor was proved to repress the expression of reporter gene efficiently,while with only DNA-binding domain or effector domain the repression was not remarkable. By adding different effector domains and changing the DNA-binding domain, artificial transcription factor would have a wide range of potential applications.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Genes, Synthetic , Genetics , Physiology , Models, Theoretical , Peptide Library , Polymerase Chain Reaction , Promoter Regions, Genetic , Genetics , Transcription Factors , Chemistry , Metabolism , Zinc Fingers , Genetics , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL